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Kelvin’s theorem on conservation of circulations is an essential ingredient of Taylor’s theory of turbulent
energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear
mechanism for the breakdown of Kelvin’s theorem in ideal turbulence at infinite Reynolds number. We develop
here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation
for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate
Kelvin’s theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent
flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the
effective equations. This result is an analog for circulation of Onsager’s theorem on energy dissipation for
singular Euler solutions. The physical mechanism of the breakdown of Kelvin’s theorem is diffusion of lines of
large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the
Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the
circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent
vortex force by a multiscale gradient expansion. We discuss implications for Taylor’s theory of turbulent
dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohy-
drodynamic turbulence.
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I. INTRODUCTION

The fundamental laws of vortex motion for incompress-
ible inviscid fluids in three space dimensions were formu-
lated by Helmholtz �1�. Starting from the incompressible Eu-
ler equations for an ideal fluid, he showed that vortex lines
are material lines and that the flux within any vortex tube is
a Lagrangian invariant. Lord Kelvin �2� gave an elegant al-
ternative formulation of these laws in terms of the conserva-
tion of circulation, for any closed loop advected by an ideal
fluid. This theorem is equally valid in any space dimension.

However, all of these results depend upon an implicit as-
sumption that the solutions of the fluid equations remain
smooth in the inviscid limit. In this limit, as the Reynolds
number tends to infinity, all smooth, laminar solutions of the
Euler equations are unstable and the fluid motion becomes
turbulent. For infinite-Reynolds-number turbulent solutions,
standard conservation laws of the ideal Euler equations of
motion need not hold. For example, both experiments �3–6�
and simulations �7,8� show that energy is not conserved in
turbulent fluids even in the limit as molecular viscosity tends
to zero. The anomalous rate of energy dissipation in turbu-
lent fluids was attributed by Onsager �9� to predicted Hölder
singularities in the solutions of the inviscid Euler equations.
In particular, he showed that a �spatially minimum� Hölder
exponent hmin�1/3 is necessary for an Euler solution to
dissipate energy. See also �10–13�. The existence of such
near singularities for turbulent velocity fields at high Rey-
nolds number has been confirmed by data from experiments
and simulations �14–16�.

In a previous work �17� �hereafter referred to as “I”� we
considered similar questions for the conservation of circula-
tions by turbulent solutions. In that paper we proved an ana-
logue of Onsager’s theorem, stating necessary conditions for
the anomalous dissipation of circulations by inviscid Euler
solutions. Furthermore, since these conditions are expected
to be satisfied in turbulent flow, we conjectured that Kelvin’s
theorem, in its usual form, indeed breaks down for the rel-
evant high-Reynolds-number solutions. We termed this phe-
nomenon a “cascade of circulations.” In a following paper
�18� we presented evidence from direct numerical simula-
tions for the existence of such a cascade. The purpose of the
present paper is to elaborate further the physical theory of
this phenomenon. In particular, our aims are as follows.

In the remainder of this section of the paper, we shall
discuss some important background information. We first re-
mind the reader of the classical Kelvin theorem. Next we
briefly review some ideas of Taylor �19–21� about the role of
circulation conservation in the production of energy dissipa-
tion in three-dimensional turbulence. In the second section of
the paper we present our main results. First, we discuss the
filtering approach which is the basis of our theory, and ex-
plain its relation to renormalization-group ideas and to large-
eddy simulation modeling of turbulent flows. Second, we
establish exact results for large-scale circulation balance of
low-pass-filtered velocity fields. Third, we explain how Tay-
lor’s argument can be extended to stretching of filtered vor-
ticity and how this is related to forward cascade of energy
through the inertial range. Fourth, we review the results from
I on the possibility of anomalous dissipation of circulations
in the limit of zero filtering length. Fifth, we point out an
interesting analogy between this cascade of circulations and
the phenomenon of phase-slip in superfluids, noting similari-
ties with previous ideas of Anderson �22�. Sixth, we discuss
the scale locality of the circulation cascade and elaborate a
multiscale gradient �MSG� expansion for circulation flux,
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along the lines laid out earlier for turbulent stress �23,24�.
Finally, in the Conclusion section we discuss some implica-
tions of our results and various extensions to magnetohydro-
dynamic �MHD� and geophysical fluid turbulence.

A. Classical Kelvin theorem

We here briefly review some standard facts about the con-
servation of circulations. Let u�x , t� be a smooth velocity
field solving the incompressible Navier-Stokes equation with
viscosity �

�tu + �u · ��u = − �p + ��u, � · u = 0, �1�

where x���Rd, for any integer d�2. Here p�x , t� is the
so-called kinematic pressure �or, thermodynamically, the en-
thalpy per unit mass�. For any closed, oriented, rectifiable
loop C�� at an initial time t0, one defines the circulation

��C,t� = �
C�t�

u�t� · dx = �
S�t�

��t� · dA �2�

where C�t� is the loop at time t advected by the fluid veloc-
ity, S�t� is any surface spanning that loop, and ��t�=�
	u�t� is the fluid vorticity. These circulations satisfy the
Kelvin-Helmholtz theorem in the following sense:

d

dt
��C,t� = ��

C�t�
�u�t� · dx , �3�

for example, see �25�, Sec. 1.6, for the standard derivation. It
is worth observing that the Kelvin theorem for all loops C is
formally equivalent to the Navier-Stokes equation �26�. In-
deed, if u�x , t� is a smooth spacetime velocity field,
divergence-free at all times t, then Eq. �3� implies that

�
C

�Dtu�t� − ��u�t�� · dx = 0 �4�

for all loops C at every time t. Here Dtu=�tu+ �u ·��u is the
Lagrangian time derivative and Eq. �4� is derived by apply-
ing �3� to the preimage of the loop C at initial time t0. By
Stokes theorem, Eq. �4� can hold for all loops C�� if and
only if there exists a pressure field p�x , t� such that the
Navier-Stokes equation �1� holds locally and also globally, if
the domain � is simply connected.

In the inviscid limit �→0, the circulation is formally con-
served for any initial loop C. The fluid equations in this limit,
the incompressible Euler equations, are the equations of mo-
tion of a classical Hamiltonian system. They can be derived
by the Hamilton-Maupertuis principle from the action func-
tional

S�x� =
1

2
�

t0

tf

dt�
�

da�ẋ�a,t��2 �5�

with the pressure field p�x , t� a Lagrange multiplier to en-
force the incompressibility constraint. Here x�a , t� is the La-
grangian flow map which satisfies ẋ�a , t�=u(x�a , t� , t) with
initial condition x�a , t0�=a. See �27,28� for reviews. This
variational principle yields the fluid equations in a Lagrang-

ian formulation, as ẍ�a , t�=−�p(x�a , t� , t). The Eulerian for-
mulation �1� �with �=0� is obtained by performing variations
in the inverse map a�x , t�, or “back-to-labels map,” with
fixed particle positions x. This Hamiltonian system has an
infinite-dimensional gauge symmetry group consisting of all
volume-preserving diffeomorphisms of �, which corre-
sponds to all smooth choices of initial fluid particle labels. In
this framework, the conservation of the circulations for all
closed loops C emerges as a consequence of Noether’s theo-
rem for the particle-relabeling symmetry �29�. For reviews,
see �27�, Sec. 4 or �28�, Sec. 2.2.

B. Circulation and turbulent energy dissipation

In several papers �19–21�, Taylor has argued for the im-
portance of conservation of circulations in the turbulent gen-
eration of energy dissipation at high Reynolds numbers in
space dimension d=3. We briefly review his ideas. The sim-
plest version of Taylor’s argument is based upon the concept
of vortex-line stretching. Consider a vortex tube initially
with length L0, cross-sectional area A0, and vortex strength

0. Taylor assumed that such a vortex tube at high Reynolds
number will evolve as a material line. Taylor also reasoned
that vortex lines �or any material lines� should tend to
lengthen, on average, under random advection by a turbulent
velocity field. Thus, at a later time t� t0, the tube length is
typically L�t��L0. By incompressibility, the volume V�t�
=L�t�A�t� does not change in time, so that A�t��A0. Further-
more, Taylor reasoned by the Helmholtz theorem that the
vortex flux through the tube, ��t�=
�t�A�t�, would not
change, so that 
�t��
0. In fact, by this chain of reasoning,


�t�/
0 = L�t�/L0, �6�

and vortex strength increases in direct proportion to line
length. Because the viscous energy dissipation in the vortex
tube is given by ��
2�t�dV=�
2�t�V0, this process should
lead to a dramatic enhancement of dissipation.

However, this argument contains an apparent inconsis-
tency. On the one hand, Taylor’s assumptions that vortex
lines are material lines and that the Kelvin theorem applies
require that the viscosity term in the circulation balance �3�
can be neglected. On the other hand, Taylor retains the vis-
cous dissipation in the energy balance, arguing, in fact, that it
is sizable. It is not at all clear that it is valid to ignore the
viscosity effects in one place and to keep them in another.
Taylor himself recognized the delicacy of his argument. In
�20� he presented this line of reasoning, and then wrote:
“When 
2 has increased to some value which depends on the
viscosity, it is no longer possible to neglect the effect of
viscosity in the equation for the conservation of circulation,
so that �10� �our �6�� ceases to be true.” Thus, Taylor as-
sumed that there is some interval of time or some range of
length scales for which viscous effects can be neglected in
the circulation balance �3�. We shall critically review this
assumption below.

In a following paper �21�, Taylor tested some predictions
of his argument using experimental data for decaying turbu-
lence generated from a wind tunnel. His analysis was based
upon the following equation for production of enstrophy:
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�t	1

2
���2
 + � · �1

2
���2u − ��	1

2
���2
� = �TS� − �����2

�7�

which is an exact consequence of the incompressible Navier-
Stokes dynamics �1� for space dimension d=3. Here Sij
= �1/2���ui /�xj +�uj /�xi� is the strain matrix. Under condi-
tions of space homogeneity, the average of the transport term
vanishes, so that

�d/dt�
 1

2
���2� = ��TS�� − ������2� . �8�

Taylor’s argument on vortex-line stretching suggests that
�d /dt�����2��0, which can hold if and only if ��{S��
�������2��0. Thus, enstrophy will be created when the
mean rate of vortex stretching by the strain is positive and
exceeds the mean destruction of enstrophy by viscosity. In
�21�, Taylor found from an analysis of wind-tunnel data that
the latter condition holds for an initial range of time in de-
caying turbulence.

II. CIRCULATION CASCADE

We now turn to an analysis of circulation conservation in
high-Reynolds-number turbulent flow. One approach would
be to directly analyze the �→0 limit of Eq. �3�. However, we
shall pursue a complementary approach based upon a study
of nonlinear transfer in the inertial range.

A. Filtering approach

To analyze the dynamics in the inertial range, we intro-
duce effective equations that govern the evolution of the ve-
locity field at large length scales. For any chosen length �, let

u��x� =� dr G��r�u�x + r� �9�

denote the low-pass-filtered velocity at scale �, where
G��r�=�−dG�r / � � is a filter kernel. We shall assume that G
is positive, smooth, rapidly decaying in space and with unit
integral. Then u� satisfies an effective equation

�tu� + �u� · ��u� + � · �� = − �p� + ��u�, �10�

where p� is the filtered pressure and �� is the turbulent stress
tensor

�� = �uu�� − u�u�. �11�

The filtering operation that we have employed can be re-
garded as a “coarse-graining” that eliminates high-wave-
number modes, as in renormalization-group methodology
�30,31�. Because of momentum conservation, the effective
renormalized equation can change only by additional contri-
butions to the stress tensor. This filtering approach is also the
mathematical basis of the large-eddy-simulation modeling
scheme �32,33�. In this scheme, the stress tensor is the main
unknown that must be modeled, in order to obtain a closed
equation for computation of the large-scale velocity field.

In the inertial range of turbulent flow the final viscosity
term in Eq. �10� can be neglected. For example, a fairly
crude estimate based upon the identity

�u��x� = �−2� dr��G���r�u�x + r� �12�

is ���u��2� �� /�2��const� �u�2, where �u�2= ��dx �u�x��2�1/2

is the L2-norm. If the total kinetic energy per mass E
= �1/2� �u�2

2 remains finite in the limit as �→0, then the vis-
cosity term in Eq. �10� tends to zero in the L2-norm for any
fixed filter length �.

There is another form of the effective equation �10� which
is useful. Note that the stress appears only via the turbulent
(subgrid) force f�=−� ·�� �33�. This can be replaced in �10�
using the following elementary identity:

f� = − �k� + f�
*, �13�

where k�= �1/2�tr�� is the turbulent kinetic energy �32� and

f�
* = �u 	 ��� − u� 	 �� �14�

is the turbulent vortex force. With this replacement, �10� be-
comes

�tu� + �u� · ��u� = − �p�
* + f�

* + ��u�, �15�

where p�
*= p�+k� is a modified pressure. Although this form

of the large-scale effective equation leads to more intuitive
results, it is less easy to make sense of mathematically. In
fact, the vortex force f�

* could be badly ultraviolet divergent
in the limit as �→0. Notice that for infinite-Reynolds-
number turbulence the velocity u is believed to be a continu-
ous but nondifferentiable function, so that the vorticity �
exists only as a distribution. Therefore, the product u	� is
a priori ill defined. However, the vortex force remains well
defined due to the identity �13�, since both f� and �k� make
sense as long as �u�2� 
 .

B. Circulation balance at large scales

It is natural to enquire about the circulation balance for
the large-scale effective equation. Let us choose an oriented,
rectifiable, closed loop C in space. We define C��t� as the
loop C advected by the filtered velocity u�. This definition
makes sense, since the filtered velocity u� is Lipschitz in
space, and corresponding flow maps x��a , t� defined by

�d/dt�x��a,t� = u�„x��a,t�,t…, x��a,t0� = a , �16�

both exist and are unique �see I�. We define a “large-scale
circulation” with initial loop C as the line integral

���C,t� = �
C��t�

u��t� · dx �17�

for ��R= the radius of gyration of the loop C.1 The same
calculation that establishes the Kelvin theorem, but using the

1The circulation quantity defined in �17� is mainly of interest for
��R. Otherwise, if ��R, then u� is nearly constant over the scale
of the loop and ����C , t� � =O�R / � ��1.
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effective equation �10� rather than the Navier-Stokes equa-
tion �1�, gives

�d/dt����C,t� = �
C��t�

�f��t� + ��u�� · dx . �18�

If the Navier-Stokes equation �1� were driven by an external
body force fext, then there would be an additional term fext

inside the square brackets in Eq. �18�. If this external force is
spectrally supported at wave numbers of order 1 /L, then its
contribution to the circulation balance is O�R /L�. Thus, the
forcing term is negligible for R�L. Likewise, the viscous
term in Eq. �18� is negligible for small viscosity � and fixed
filter length �, by an elaboration of the argument given
around Eq. �12�. �A so-called trace theorem can be used to
estimate the restriction of �u� to the loop C; see I and �34�.�

These remarks show that the nonlinear term from the sub-
grid force is the dominant term in the circulation balance
�18� for inertial-range values L�R� � ��d �where �d is a
dissipation length scale determined by the viscosity ��. If we
imagine that the total circulation at all scales on the loop is
conserved, then the line integral of f� on the right-hand side
of �18� represents a “transfer” of circulation to subgrid
modes at length scales below �. This motivates the defini-
tion, for any loop C and filter length �, of a flux of circulation

K��C,t� = − �
C��t�

f��t� · dx = − �
C��t�

f�
*�t� · dx �19�

so that �d /dt����C , t�=−K��C , t� �up to small corrections
from external forcing and viscosity�. We have used identity
�13� to justify the equality of the two expressions in the
definition �19�. The minus sign has been introduced so that
the signs of the circulation �17� and the circulation flux �19�
should be positively correlated. This expectation will be dis-
cussed more below.

The circulation flux defined in �19� has the physical di-
mensions of work or of torque �per unit mass�. Additional
insight into its meaning can be obtained by decomposing the
turbulent vortex force �14� into components perpendicular
and parallel to large-scale vortex lines:

f��
* = �� 	 �̂�, f��

* = �f�
* · �̂���̂� �20�

where �̂�=�� / ���� and

�� = �̂� 	 f�
*. �21�

If t̂� is the unit tangent vector to the curve C��t� and s is the
arc-length parameter, then

K��C,t� = �
C��t�

���t� · n�ds − �
C��t�

f��
* �t� · dx �22�

where n�= t̂�	�̂�. Note that the latter vector is normal both
to lines of large-scale vorticity �� and to the loop C��t�, but
it is not generally a unit vector. The first term in �22� can be
interpreted as a lateral diffusion of vortex lines out of the
advected loop, where �� plays the role of a transport vector
of vortex lines. The second term in �22� represents an addi-
tional work �or torque� due to the parallel component of the
turbulent vortex force.

Some particular cases of �22� are of special interest. For
example, consider the case that C��t� is instantaneously a
closed vortex line. �This property will not generally be pre-
served in time.� Then the first term in �22� vanishes and
K��C , t�=−�C��t�f��

* �t� ·dx. Such integrals play an important
role in vortex-reconnection theory �35�. The distinguished
vortex lines for which this integral is extremal drive the re-
connection process and the value of the integral for such
lines gives the rate of reconnection of vortex flux. This inte-
gral is therefore the proper point of departure for a theory of
turbulent reconnection of large-scale vortex lines. Another
special case of �22� of interest is when the loop C��t� lies in
a transversal surface normal to the lines of large-scale vor-
ticity. In that case, the second term in �22� vanishes and
K��C , t�=�C��t����t� · n̂�ds, where n̂�= t̂�	�̂� is now a unit
vector. This condition is always satisfied for space dimension
d=2. The flux of circulation is then entirely due to the dif-
fusion of vortex lines out of the loop.

These remarks on the physical interpretation of K��C , t�
lead to some natural guesses on the correlation of its sign
with that of the circulation ���C , t�. The latter can be written
as

���C,t� = �
S��t�

���t� · dA , �23�

where S��t� is any smooth surface spanning the loop C��t�
and with orientation consistent to that of C��t� �by the right-
hand rule�. If the circulation �23� is positive, then there is a
net contribution from vortex lines threading the loop in the
direction of the surface unit normal. If the effect of the tur-
bulence is “diffusive” on average, then one would expect that
the vortex force will tend to smooth out the excess of
positive-sign vorticity threading the loop. Thus, according to
the sign convention of the definition �19�, we can expect that
K��C , t� will also tend to be positive and to reduce the overall
magnitude of the large-scale circulation. Of course, this ar-
gument works equally well when ���C , t� has negative sign.
We may therefore expect that there is in general a “forward
cascade” of circulations, and that the magnitude of the large-
scale circulation, of whatever sign, will tend to be decreased
by the small-scale turbulence. This reasonable result has
been confirmed by numerical results in �18�.

An interesting exception is the inverse-energy cascade for
d=2 turbulence. For space dimension d=2, the enstrophy
��t�= �1/2� �
�2 is an inviscid invariant and its flux to unre-
solved scales below � is measured by

Z� = − �
� · ��, �24�

where 
� is the filtered vorticity �perpendicular to the plane�
and �� is the vorticity transport vector defined in �21�. See
�36–38�. From �24� one can see that enstrophy will cascade
forward to small scales when vorticity transport tends to be
“down gradient” and �
� ·���0. On the other hand, enstro-
phy flux will be inverse to large scales when the vorticity
transport is “up gradient.” In d=2 there are expected to be
two inertial cascade ranges, the direct enstrophy cascade
where the mean enstrophy flux is positive and the inverse
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energy cascade where the mean energy flux is negative
�39,40�. However, there is also some “leakage” of energy
flux and enstrophy flux into the opposite ranges �e.g., see
�36,41��. In particular, the mean enstrophy flux in the inverse
energy cascade range is negative, or toward larger scales.
This means, according to �24�, that the vorticity transport in
that range is, on average, up gradient or antidiffusive. There-
fore, our argument for the sign of circulation flux is reversed.
In the inverse cascade range, a loop containing an excess of
one sign of vorticity should tend to accumulate more vortic-
ity of the same sign. Thus, in the d=2 inverse energy cascade
range there should be also an “inverse cascade of
circulations.”2

C. Stretching of large-scale vorticity

We have seen that the large-scale circulations, in the in-
ertial range, evolve according to the equation

�d/dt����C,t� = �
C��t�

f�
*�t� · dx . �25�

The term on the right-hand side due to the vortex force need
not be negligible. Thus, Taylor’s conjecture that Kelvin’s
theorem should hold in the inertial range, even approxi-
mately, is far from obviously true. In the next section we
shall explore this question mathematically, to the extent pos-
sible. Here we discuss some physical implications of Tay-
lor’s conjecture, if true.

If we suppose that the inertial-range circulations are con-
served, then Taylor’s argument about vortex-line stretching
can be repeated for filtered vorticity, implying

�d/dt������2� � 0. �26�

This result can also be understood from the equation for the
filtered vorticity, obtained by taking the curl of Eq. �15� �with
�=0�:

�t�� + �u� · ���� = ��� · ��u� + � 	 f�
*. �27�

From this an equation for inertial-range enstrophy easily fol-
lows:

�t	1

2
����2
 + � · 	1

2
����2u� + ������


= ��
TS��� + f�

* · �� 	 ��� . �28�

�Compare with �42�, Eq. �51�, for �→0.� Notice that the
vorticity transport vector �� defined in �21� contributes to
the space transport of enstrophy. However, assuming space
homogeneity, all of the space-flux terms average to zero and

�d/dt�
 1

2
����2� = ���

TS���� + �f�
* · �� 	 ���� . �29�

This equation is an exact inertial-range analog of Eq. �8� for
total enstrophy. The first term on the right-hand side of �29�

represents inertial-range vortex stretching and the second
term represents enstrophy flux to length scales below �. For
freely decaying turbulence at early times, Taylor’s argument
predicts that ���

TS����+ �f�
* · ��	����= �d /dt�� 1

2 ����2��0.
On physical grounds, one expects that the vortex stretching
is positive and the enstrophy transfer term negative, with the
net enstrophy production positive. At later times a quasiequi-
librium should be established so that �d /dt�� 1

2 ����2��0 and
the dominant balance becomes

0 � ���
TS���� � − �f�

* · �� 	 ���� . �30�

For some experimental results on these questions, see �42�.
It was observed in �43� that the energy flux �� to unre-

solved scales below � can be expressed approximately in
terms of the negative skewness of filtered strain and the
stretching rate of filtered vorticity:

�� = C�2�− tr�S�
3� + �1/4���

TS���� . �31�

This expression is the first term in a systematic “multiscale
gradient expansion” �24�. It follows from an identity of
Betchov �44� that for any homogeneous turbulence

���� = C�2���
TS���� . �32�

Thus, the energy cascade will be forward to small scales
when the mean rate of vortex stretching is positive. This is an
inertial-range version of Taylor’s mechanism �20,21�.

D. Anomalous conservation of circulation

We now consider the question whether Kelvin’s theorem
can hold, in any sense, in turbulent flow at high Reynolds
number. In view of Eq. �18� or �25�, we must estimate the
magnitude of the circulation flux defined in �19�. The follow-
ing simple identity, observed in �17�, is useful to provide an
estimate of the turbulent subgrid force:

f�i�x� =
1

�
� dr�� jG���r��ui�r;x��uj�r;x�

−
1

�
� dr�� jG���r��ui�r;x� � dr�G��r���uj�r�;x� .

�33�

Here �u�r ;x�=u�x+r�−u�x� is the velocity increment with
separation vector r at location x. An upper bound easily fol-
lows that �f� � =O���u����2 / � �, where �u��� is the maximum
magnitude of the velocity increment for separation vectors
with �r � �� �17�.

If the velocity field were smooth, then ��u��� � ��const��
for small � and the subscale force would vanish as �→0.
However, a turbulent velocity field does not remain smooth
in the limit as the Reynolds number tends to infinity. Instead,
theory, simulations, and experiment indicate that the velocity
field is only Hölder continuous with exponent 0�h�1:

��u�r;x�� = O�rh� . �34�

At each point x one refers to the maximal value h for which
�34� holds as the Hölder exponent at that point. There is a

2This phenomenon has been previously observed in numerical
simulations of the d=2 inverse energy cascade �72�.
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spectrum of such singularities in the flow, with exponent h
occurring on a set S�h� with fractal dimension D�h�. It was
pointed out by Onsager �9� that the smallest exponent hmin

must be �1/3 to explain nonvanishing energy dissipation in
the inviscid limit. Parisi and Frisch �45� invoked a multifrac-
tal spectrum D�h� of singularities to explain the anomalous
scaling of pth moments of velocity increments �so-called
pth-order structure functions�. Such multifractal spectra of
Hölder exponents have been confirmed by analysis of data
from experiments and simulations �14–16�. Of course, at fi-
nite Reynolds numbers there are only “near singularities” in
the inertial range of scales and the velocity is smooth in the
dissipation range, where effects of viscosity are important.

From our estimate below Eq. �33�, we see that �f� �
=O��2h−1� at any point with local Hölder exponent h. Thus,
the circulation flux K��C , t� will go to zero as �→0 if the
smallest velocity Hölder exponent hmin is greater than 1/2
and if also the curve C�t� has finite length �17�. This is an
exact analog for circulation flux of Onsager’s result �9� for
vanishing of energy flux when hmin�1/3. Only a sufficiently
rough velocity field can provide a transport of vortex lines
which is nonvanishing in the limit as �→0. However, high
Reynolds turbulence in space dimension d=3 has a plethora
of singularities with exponents h�1/2. For example, the
most probable exponent h* with D�h*�=3 has a value h*

�1/3, very close to the mean-field Kolmogorov value
�14–16�. Furthermore, the curves C��t� advected by the
large-scale velocity u� are expected to approach a fractal
curve C�t� in the limit as �→0 �46,47�. Thus, circulation flux
is not likely to vanish as the filtering length decreases
through the inertial range. Numerical simulations of high-
Reynolds-number turbulence for d=3 confirm this prediction
�18�.

There is an important subtlety in the formulation of
Kelvin’s theorem for infinite-Reynolds-number turbulence
that must be mentioned at this point. Recent work on an
idealized turbulence problem—the Kraichnan model of ran-
dom advection �48�—has shown that Lagrangian particle tra-
jectories x�t� ,x��t� can explosively separate even when x0

=x0� initially, if the advecting velocity field is only Hölder
continuous and not Lipschitz. See �49�. Mathematically, this
is a consequence of the nonuniqueness of solutions to the
initial-value problem, while, physically, it corresponds to the
two-particle turbulent diffusion of Richardson �50�. It has
been rigorously proved in �51,52� that there is a random
process of Lagrangian particle paths x�t� in the Kraichnan
model for a fixed realization of the advecting velocity and a
fixed initial particle position. This phenomenon has been
termed spontaneous stochasticity �53� and it is likely that it
holds, not only in the Kraichnan model, but also for singular
solutions of the inviscid Euler equations. If so, then the ad-
vected curves C�t� that appear in the definition of circulation
�2� are likely to be random fractal curves.

If these speculations are correct, then the time series of
circulations ��C , t� are also a stochastic process, for a fixed
turbulent velocity field. In �17� we have presented some
plausibility arguments in favor of the following “martingale
property” for this random process of circulations:

���C,t����C,��,� � t�� = ��C,t�� for t � t�. �35�

Here �·� denotes the expectation over the ensemble of ran-
dom Lagrangian paths and we have conditioned on the past
circulation history ���C ,�� ,�� t��. Heuristically,

�d/dt����C,t����C,��,� � t��

= − lim
�→0

�K��C,t����C,��,� � t�� = 0. �36�

The circulation flux in �36� is conjectured to average to zero,
due to increasingly rapid oscillations of the vortex force f�

*

around the loop C��t�, as �→0. See �17�. The result in �36�
has been partially confirmed by the results of a numerical
simulation in �18�, providing some support to the conjecture
�35�. This martingale property is a statement of conservation
of circulations, in a conditional mean sense. It is not clear yet
whether this weakened version of the Kelvin theorem is valid
and, if so, whether it suffices for Taylor’s vortex-stretching
mechanism.

E. Analogy with phase-slip in superfluids

It is worth pointing out an analogy of the circulation cas-
cade discussed above with another physical phenomenon, the
phase slip due to quantized vortex lines in superfluids
�22,54�. Anderson had already discussed classical analogs of
quantum phase slip in �22�, Appendix B. His starting point
was the classical Euler equations for an incompressible fluid,
written as

�tu = − �h + u 	 � , �37�

where h= p+ �1/2� �u�2 is the enthalpy. Anderson considered
the line integral of the fluid velocity u along a stationary
curve C connecting two points P1 and P2, showing that

�d/dt��
C

u�t� · dx = − �Ch + �
C

�dx 	 u� · � . �38�

Here �Ch=h�P2�−h�P1� is the difference of h along the
curve C. Denoting the time average by �·�, this relation yields

�Ch = �
C

�dx 	 u� · � . �39�

Since vortex lines for smooth solutions of the classical Euler
equations move with the particle velocity u=dx /dt, the
right-hand side of �39� can be interpreted as an average rate
of flow of vorticity across the curve C. This flow rate is thus
equal to the average enthalpy difference along the curve.
After deriving �39�, Anderson wrote �22�: “We see immedi-
ately that this equation is far more important in a superfluid,
where vorticity is conserved and quantized, than it is in or-
dinary fluids, where in a laminar flow, for instance, the right-
hand side has little or no special significance.” One critical
difference between classical fluids and superfluids is that, in
the former, the vortex lines for laminar solutions move with
the fluid. Thus, if one instead considers a material curve
C�t�, advected by the fluid velocity u, then one obtains
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�d/dt��
C�t�

u�t� · dx = �C�t�� �40�

with �= �1/2� �u�2− p, rather than �38�. The nontrivial term
associated with flow of vorticity across the curve is now
absent and Eq. �40� for a closed loop yields the classical
Kelvin theorem.

Nevertheless, we have found that it is possible for turbu-
lent flow to yield a nontrivial result. In fact, by filtering the
Euler equation �37� one obtains

�tu� = − �h� + u� 	 �� + f�
*, �41�

with the additional vortex-force term. This equation is
equivalent to

Dtu� = �tu� + �u� · ��u� = − �p�
* + f�

*, �42�

which is our old Eq. �15� for �=0. As we have seen in our
earlier discussion of the large-scale circulation balance, Eq.
�18� or �25�, the turbulent vortex force provides a nontrivial
transport of vorticity across material curves. Here it is crucial
that the velocity field be sufficiently singular, to permit a
transport which is nonvanishing for �→0. If instead the flow
were smooth and laminar, then f�

*→0 in that limit and filter-
ing the equation would lead to no new result. For singular
solutions the Euler equation �37� must be filtered to make
sense, as a matter of principle. In the presence of singulari-
ties the equation is interpreted in the sense of distributions,
which means that it must be smeared with smooth test func-
tions.

Nontrivial results are also possible in superfluids, for
similar reasons. The superfluid phase order parameter �
obeys the Josephson-Anderson frequency equation �22,54�

� d�/dt = − 	� +
1

2
mus

2
 , �43�

where � is the chemical potential and us= �� /m��� is the
superfluid velocity. It is straightforward to derive from �43�
the superfluid equation of motion

Dtus = ��t + us · ��us = − ���/m� − us 	 �s. �44�

Here the final term contains the superfluid vorticity �s=�
	us which is, formally, a � function supported on singular
vortex lines �zeros of the superfluid density�. Equation �44�
is the basis of derivations of Kelvin’s theorem for superflu-
ids, e.g., see �55� in the context of the zero-temperature
Gross-Pitaevskii equation. Note, however, that such deriva-
tions require that the advected loop not pass through singular
points where the superfluid velocity is ill defined. Since the
quantized vortex lines are not material lines in general �e.g.,
see �56–58��, it is possible for them to migrate out of an
advected loop. Examples are given in �55� of the failure of
Kelvin’s theorem due to the intersection of loops with singu-
larities that are, formally, represented by the rightmost term
in Eq. �44�. That equation is thus analogous to Eq. �42� for
classical turbulence.

One of the concrete manifestations of quantum phase slip
is the decay of “persistent” superfluid flow in a thin toroidal
ring; for example, see �59� and references therein. This pro-

cess has a number of similarities to the cascade of circula-
tions in turbulent flow. The decay of the superflow is medi-
ated by the �thermal or quantum� nucleation of quantized
vortices which migrate out of the ring. The passage of a
vortex across the toroidal cross section induces by phase slip
a pulse of torque which decreases the circulation around the
ring. The reduction in the angular momentum of the super-
fluid condensate is balanced by a gain in the normal fluid
excitations, acting as an angular momentum reservoir. In the
turbulent circulation cascade, the large-scale vortex lines are
also not material, because singularities in the velocity field
allow them to diffuse relative to the fluid. The subscale
modes at length scales below � act as a reservoir, whose
feedback on the resolved scales greater than � provides the
vortex force that drives the diffusion. Unlike in superfluids,
this is a continuous process, since classical vortices are not
quantized. There is also no need for the singularities to be
nucleated as fluctuations, since they are everywhere present
in the turbulent flow. Finally, if the martingale conjecture
�35� is correct, then the turbulent diffusion of vortex lines is
not persistent in scale, on average, and does not lead to irre-
versible decay of circulations in the mean.

F. Scale locality and MSG expansion

We have referred to this turbulent diffusion of vorticity as
a “cascade” of circulations, but we have not shown that the
process is a local-in-scale cascade. Here we shall examine
this issue, following the general approach in �23�.

We note first that the turbulent vortex force f�
* defined in

�14� is a priori not ultraviolet �uv� local, under conditions
realistic for turbulence in d=3. In fact, the vorticity is a
dissipation-range variable and its largest contributions come
from the viscous scale. The arguments in �23� for uv locality
would apply to f�

* if the Hölder exponents hu of velocity and
h
 of vorticity both were positive. However, h
=hu−1, so
that vorticity is expected to have negative Hölder exponents
in the infinite-Reynolds-number limit �and thus to exist only
as a distribution� �16�. It is possible that there could be can-
cellations in the average �14� over displacement vectors that
defines the vortex force; for example, this was found to be
true in the d=2 enstrophy cascade, by an analysis of the
results of a numerical simulation �38�. However, the uv di-
vergence is more severe for d=3, so that sufficient cancella-
tion is less likely there.

On the other hand, because of the identity �13�, we may
use the turbulent subscale force f�=−� ·�� rather than the
vortex force f�

* to study the circulation flux. The force f� has
much greater chance to be local in scale, because it is defined
only in terms of velocity. Indeed, some locality properties
follow directly from the representation �33� in terms of ve-
locity increments. As in �23�, let us define u��=G�*u to be
the low-pass-filtered velocity at length scale ��� and define
u��=u−u�� to be the high-pass-filtered velocity at length
scale ���. We can then define a very large-scale contribu-
tion f�

�� to the turbulent force by replacing both u in the
formula �33� with u��. Likewise, we define a very small-
scale contribution f�

�� by replacing both u with u��. Now
suppose that the velocity field has Hölder exponent h at a
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considered point x. Then, the following estimates can be
easily derived, by the same methods as in �23�:

�f�
��� = O���2h−2� �45�

and

�f�
��� = O��2h/ � � . �46�

The estimate �45� expresses infrared �ir� locality. In fact,
when h�1, this estimate shows that f�

�� decreases for in-
creasing � and fixed �. Relative to the estimate �f� �
=O��2h−1�, the estimate �45� for �f�

��� is smaller by a factor
O(�� /��2�1−h�). Likewise, the estimate �46� expresses uv lo-
cality. When h�0, this estimate shows that f�

�� decreases for
decreasing � and fixed �. The estimate �46� for �f�

��� is
smaller than that for �f�� by a factor of O(�� / � �2h). These
results show that most of the turbulent subgrid force f�

comes, pointwise, from pairs of velocity modes at length
scales ��.

The above arguments do not quite settle the issue of lo-
cality of the circulation flux K��C , t�, however. The delicate
point here is that large cancellations are expected in the line
integral of f� that defines that flux. In order to infer scale
locality of K��C , t�, one must assume that similar cancella-
tions occur in the line integrals of f�

�� and f�
��. This issue is

hard to address mathematically but may be investigated us-
ing data from simulation or experiment.

The uv locality properties of the subgrid force f� may be
used to develop an analytical expression for it, by means of a
multiscale gradient expansion �24�. We consider only the
lowest-order term in that expansion, which corresponds to
the so-called nonlinear model for the stress �33�:

�ij = C�2ui,luj,l. �47�

Here C=�dr �G�r��2r1
2 and a spherically symmetric filter

function is assumed, so that r1 could be replaced with any
other single component ri. �In terms of the constant C2 em-
ployed in �24�, C=C2 /d where d is the space dimension.� We
use the convention of subscript ,j to denote � j, so that, for
example, ui,j =�ui /�xj. We also employ the Einstein summa-
tion convention for repeated indices. To avoid an excess of
subscripts, we drop above and hereafter the subscript �, since
a fixed filter length will be always understood. The physical
assumption behind the formula �47� is strong uv locality, so
that only adjacent subscale modes contribute to the stress.
We expect that this extreme assumption is fairly good in the
d=3 energy cascade and the d=2 direct enstrophy cascade.
However, we present arguments below that it fails badly for
the d=2 inverse energy cascade. Note that it is already
known that the energy transfer is only weakly scale local in
d=2 �60–62�.

From the formula �47� for the stress, one obtains the cor-
responding formula for the subscale turbulent force:

f i = − � j�C�2ui,luj,l� . �48�

By means of a standard vector calculus identity, this can be
written for d�3 as

f i = C�2�ijkuj,l
k,l − �i	1

2
C�2uj,luj,l
 . �49�

Here �ijk is the antisymmetric Levi-Cività tensor for d=3.
This formula can be simplified by substituting uj,l=Sjl

− �1/2�� jlm
m in the first term and uj,luj,l=Sj,lSj,l+
1
2 ���2 in

the second, yielding

f i = C�2�ijkSjl
k,l − �i	1

2
C�2SjlSjl
 . �50�

This is our final formula for the turbulent force. Substituting
�50� into �19� yields a similar formula for the circulation
flux:

K��C,t� = − C�2�
C��t�

�ijkSjl
k,ldxi. �51�

According to this formula, the diffusion of vortex lines out of
the loop is driven by strain acting upon the gradient of the
vorticity vector. This is plausible, since the turbulent force
should act to smooth out inhomogeneities in the large-scale
vorticity field and become negligible when the latter is con-
stant.

The same result �51� for the circulation flux can be ob-
tained from the nonlinear model of the turbulent vortex
force:

f i
* = C�2�ijkuj,l
k,l = C�2�ijkSjl
k,l + �i	1

4
C�2�
�2
 .

�52�

Although this derivation yields the same result, it is theoreti-
cally less well founded because of the poorer uv locality
properties of the vortex force. On the other hand, it gives a
little more physical insight, especially through the following
alternative expression for the vortex force:

f* = C�2� · �S 	 �� +
1

2
C�2�� · ��� . �53�

Here �S	�� ji=�iklSjk
l defines what was termed in �24� the
“skew-strain matrix” for d=3. Formula �53� is straight-
fowardly derived by calculating the divergence �S	�� ji,j

and gathering the terms. This expression makes a nice con-
nection with the MSG expansion for the turbulent stress,
developed in �24�. The first term on the right-hand side of
�53� corresponds to one of the stress contributions in the
MSG expansion, proportional to the skew strain. That term
makes no strongly uv-local contribution to energy flux but a
major contribution to helicity flux and here we see also to
circulation flux.

The second term on the right-hand side of �53� corre-
sponds to another term from the MSG expansion in �24�, a
contractile stress along vortex lines, �ij

vortex�−
i
 j. As dis-
cussed in �24�, the effects of the small-scale turbulence give
the large-scale vortex lines “elastic” properties. The second
term in �53� therefore has a simple geometric interpretation
and can be written as
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fvortex =
1

2
C�2�� · ��� =

�

�s
	1

4
C�2���2
�̂ +

1

2
�C�2���2n̂ .

�54�

To derive �54� we have used the Frenet-Serret equations
�e.g., see �63�� with t̂=�̂ the unit tangent vector along large-

scale vortex lines, n̂ the unit normal vector, and b̂ the
binormal.3The term f�

vortex in �54� parallel to vortex lines
arises from variations in the vortex strength along the line.
The term f�

vortex, which arises from bending of vortex lines, is
proportional to the curvature � of the line and is directed
along the normal n̂. Note that �54� gives a contribution to

vorticity transport of �vortex= �1/2��C�2 ���2b̂, which is di-
rected along the binormal, reminiscent of the velocity of a
slender vortex filament in the local-induction approximation
�25�.

The formulas �50� and �52� for the turbulent force sim-
plify in space dimension d=2. In that case,

f i = − C�2S
˜

ij�� j
� − �i�C�2�2� ,

f i
* = − C�2S

˜

ij�� j
� + �i	1

4
C�2�
�2
 , �55�

where ±� are the eigenvalues of the symmetric, traceless

strain matrix Sij and S
˜

ij =Sik�kj =−�ikSkj is another symmetric,
traceless matrix, called in �61� the skew-strain matrix for d
=2. �Note that �ij is the d=2 antisymmetric Levi-Cività ten-
sor.� The corresponding result for the circulation flux is

K��C,t� = C�2�
C��t�

S
˜

ij�� j
� dxi. �56�

This result can be derived as well from Eq. �22� and the
nonlinear model for the vorticity transport vector in d=2,

�i = C�2ui,j�� j
� , �57�

previously considered in �37,38�. �This formula is equivalent
to that for the vortex force in Eq. �55�.� Note, however, that
the formula �57� predicts down-gradient transport of vorticity
whenever there is a positive rate of vorticity-gradient stretch-
ing and this is expected in d=2 for both the direct enstrophy
cascade �37,38� and also the inverse energy cascade �61,62�.
Down-gradient vorticity transport is qualitatively correct in
the enstrophy cascade and there �56� may yield a good ap-
proximation. However, in the inverse energy cascade the vor-
ticity transport must be up gradient or antidiffusive. There-
fore, �56� is not likely to be a good approximation in the
inverse cascade range. It must be corrected by higher-order
terms in the convergent MSG expansion, corresponding to
smaller subgrid scales or higher-order gradients.

III. CONCLUSIONS

The main purpose of this paper was to elaborate a physi-
cal theory of the circulation cascade in classical fluid turbu-
lence. We have attempted to explain the conceptual basis of
the phenomenon, its physical mechanisms, the scale-locality
properties of the cascade, and its relation to inertial-range
vortex stretching and energy transfer. Clearly, there are many
important issues that call for further work. Chief among
these is to determine the validity of Taylor’s proposed
mechanism for turbulent energy dissipation, based on vortex
line stretching �19–21�. Even after 70 years of research, basic
elements of Taylor’s proposal remain open to question. In
particular, the strong inertial-range violations of the Kelvin
theorem—predicted in �17� and observed in �18�—cast some
doubt on a key piece of Taylor’s theory. It is possible that
circulation conservation remains valid in some weaker sense,
e.g., the conditional-mean version of the martingale conjec-
ture in �17�. Further research is necessary to see whether any
weaker form of the Kelvin theorem holds at high Reynolds
numbers and, if so, whether it is sufficient for the purposes of
Taylor’s mechanism. It should be emphasized that even the
existence of circulations in the infinite-Reynolds-number
limit is an open question. Advected loops in a turbulent flow
are expected to become fractal �46,47� and defining line in-
tegrals for nonrectifiable curves demands some mathematical
sophistication �17�. In superfluids the advected contours in
Kelvin’s theorem can also become highly distorted, with in-
teresting consequences for vortex motion �58�. Fractality of
the advected loops could have significant implications for
conservation of circulations in fluid turbulence.

In addition to hydrodynamics of incompressible fluids,
there are other turbulent systems for which phenomena simi-
lar to the circulation cascade are expected to exist. Of these,
one of the most significant is magnetohydrodynamic turbu-
lence of plasmas. In this case it is Alfvén’s theorem �64� on
conservation of magnetic flux in the ideal, zero-resistivity
limit which plays the role of Kelvin’s theorem. However,
there is strong evidence from observations of magnetic flux
reconnection rates in astrophysical settings to believe that
Alfvén’s theorem breaks down in MHD turbulence even with
negligible resistivity �65,66�. This violation of conservation
of magnetic flux, presumably due to a similar cascade phe-
nomenon as for Navier-Stokes dynamics, is discussed in a
following paper for the MHD equations �67�. Another impor-
tant problem is turbulence in geophysical fluids, where Er-
tel’s theorem �68� on conservation of potential vorticity �PV�
plays a fundamental role in theories of quasigeostrophy. It is
well-known that Ertel’s theorem is a differential form of the
Kelvin theorem �e.g., see �69�, Sec. II E or �27�, Sec. 4�. The
cascade of circulations in this context should be quite simi-
lar, generally speaking, to that for two-dimensional Navier-
Stokes equation and correspond to a turbulent transport of
PV out of the advected loop. However, in geophysical fluid
dynamics there is an additional complication that the loop in
Kelvin’s theorem must lie in a surface of constant density
�bouyancy� or pressure �27,69�. Thus, turbulent mixing of

3Our notations here differ from those employed in Sec. II B,
where t̂� referred to the unit tangent vector to the loop in the large-
scale circulation and n�= t̂�	�̂�.
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isopycnal surfaces is an additional source of breakdown of
Kelvin’s theorem in this context.

Finally, another interesting setting for circulation cascade
is superfluid turbulence �70�. The analogy between quantum
phase slip and circulation cascade could prove useful here.
Conversely, concepts that have arisen in the study of quan-
tum superfluids may give new views on old problems in
classical turbulence. For example, Anderson’s ideas on dis-
sipative phase slip in superfluids, especially as amplified by
Huggins �71�, give a natural relation between vortex-line
motion and turbulent energy dissipation in classical wall-
bounded flows. This will be the subject of future work.
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